8.1 The Pythagorean Theorem/Trigonometric Ratios

aright triangle, a® +b* = ¢?, or leg’ +leg’ = hypotenuse”.

hypotenuse c
leg a

leg b

* The hypotenuse (the longest side — the one across from the right angle) should always be by itself
on one side of the equation.

To find the length of the hypotenuse: To find the length of a leg:
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Examples: Find the length of the missing side of each triangle.
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Right Triangle Trigonometric Ratios

Trigonometry: The study of the relationships among the sides and angles of right triangles.

- Trigonometric Ratio: A ratio of the lengths of two sides of a right triangle. The three main trigonometric
rations are sine (sin), cosine (cos), and tangent (tan).

If @ is an acute angle of a right triangle, “adj” is the length of the leg adjacent (next to) 8,

“opp” 1s the length of the leg opposite &, and “hyp” is the length of the hypotenuse, then:

hypotenuse
opposite leg
8 sing = PP cos:‘}:&—dJ tani’f»’:m
adjacent leg hyp hyp adj
A common way to remember this is SOH-CAH-TOA
Three other trig ratios: esc = hyp secd = m cotld = 2]
opp adj opp

Examples: Find the exact values of sinf, cosé, tan @, csc 8, sec € and cot 6.
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No matter how big the triangle is, the values of the trigonometric functions for a certain size angle will remain
the same. For example, in the diagram below, tan27° = fe % =2 The value of the tangent is the same in all
: a ¢

unee triangles even though they are different sizes. The same is true for the sine and cosine.
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Examples: Draw and label a triangle, find the length of the missing side, and find the requested values.

Find sinf, cos@, tan8, cscl, secl, and cotf if sinfd :%
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Identify which trigonometric ratio is needed to solve for the missing side. Write the correct equation,
then solve. Round to the nearest hundredths.
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When labeling a triangle, there are a few things to remember.
c

1. Capital letters refer to angles

2. Lower case letters are the side opposite their capital letter angle. &
~ 3. In aright triangle, “C” is 90°and “c” is the hypotenuese
A 6 C
In each triangle ABC, angle C is a right angle. Find the value of the trig function indicated.
a) Find FindcosAifa=8,¢c=17,b= 15. b)FindcscAifa=14,b=2,andc = 10J§.
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Examples: Use a calculator to approximate each value to four decimal places. Make sure your calculator is in
degree mode.

a) sin 120° b) cos 350° ¢} tan —30°
0.8LL0O 0-984%® -0.57174
d) cot 280° ( e) sec 360" 5 e) csc 360° |
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8.2 Inverse Trigonometric Functions
* REMEMBER from 9.1 TrigFunction(angle/theta)=Ratio
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Inverse Functions:

e The inverse sine of x (sin "' x) is the angle whose sine is x. If sin@ = x, then # =sin™" x.
e The inverse cosine of x (cos™ x ) is the angle whose cosine is x. If cos@ = x, then € =cos ™' x.
e The inverse tangent of x (tan™' x) is the angle whose tangent is x. If tan@ = x, then @ = tan"" x.

* Use inverse functions when you know the sine, cosine, or tangent of an angle and want to know

how big the angle is.

Use a calculator to ﬁ{ld each angle measure to the nearest degree.
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Examples: Find the measure of the indicated angle to the nearest tenth of a degree.
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Find the value of x in each figure. Round your answer to the nearest hundredth.
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Solving a Triangle: Figuring out the lengths of all three sides and the measures of all three angles of a triangle.

* If you know the lengths of two of the sides, use the Pythagorean Theorem to
find the length of the third side.

* If you know the measure of one of the acute angles, use the fact that the
angles in a triangle add to 180° to find the measure of the other angle. o

* If you know the measure of one angle and the length of one side, use sin,
cos, or tan to figure out the lengths of the other sides.

* If you know the lengths of the sides and need to figure out the angle C B B

measures, use inverse functions (sin™', cos™', or tan™'). a




Examples: A4BC . Round answers to the neares(tenth.lShow all your work.
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8.3 Trigonometry on the Cartesian Plane

Cartesian Plane- is a plane with a rectangular coordinate system that associates each point in the planewith a

-of numbers. We know this as the x and y axis.
Standard Position- the vertex of the angle is on the origin
of the x and y axis and the angle is measured

counterclockwise from the positive x-axis.

Terminal Side- the ray that makes the angle when its
initial side is in standard position

Reference angle-is the smallest angle that vou can make
from the terminal side of an angle with 1 This

angle measure will always be less than 90°.
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Example: Draw the angle measurement in standard position. Identify the location of the reference angle

and its measure.

a. 45° b: 30°

e, 135° £. 210"

§s

c. 60°

g. 270°

Qo0

d, 75°
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h. 325"




When we first defined the trigonometric functions the angle 8 was between 0° and 90°
and we used the terms adjacent, opposite and hypotenuse to refer to the sides of a
triangle.

But we now want to allow angle @ to have values outside this range. These triangles
can have an angle that is bigger than 90°.

To allow for angles bigger than 90° we now imagine an arrow pointing out from the
origin with length » and orientated at angle @, and with its terminal side ending at (x. y).

We construct a triangle by drawing a line vertically from the arrowhead to the x axis and another line
horizontally across to the y axis.

We now redefine the six trigonometric functions like this:  sinf = % cosO = f tanf = %

If we are given a coordinate, we will know the value of x and y, but how could you find the value of r?

Example: Find the sine, cosine, and tangent of the following angles made by coordinate points. Keep
answers in simplified radical form (NO DECIMALS!)
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We can also use inverse trigonometric functions to find the angle created by points on the coordinate
plane. Remember: TrigFunction(angle/theta) = Ratio so Inverse function(ratio) = theta.

Find the measurement of the STANDARD ANGLE (you will need to first find the reference angle!) that (
~is created by the coordinate point. Draw a picture. Round to the ten-thousandths place. ( "+ et ces )
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8.4 Special Right Triangles

" o the Pythagorean Theorem to find the length of the hypotenuse for each right triangle. Express your
«—.swers in simplest radical form.

. a) b)

45°-45°-90° Right Triangles:
e Legs are the same length ¥

e Hypotenuse= LegX«/E

wmples: Find the value of each variable.




30°-60°-90° Right Triangles:
, . I- Hypotenuse = 2>Short Leg 2 a
o . e Long Leg= Short Leg /3 30° 1
B

Examples: Find the value of each variable.
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8.4 Special Right Triangles (continued)

Find the measurement of the STANDARD ANGLE (you will need to first find the reference angle!) that is

. -ated by the coordinate point. Draw a picture. Use special right triangles to solve for the angle. NO
DECIMAL ANSWERS ALLOWED!
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A six-meter-long ladder leans against a building. If the ladder makes an angle of 60° with the ground, how far
up the wall does the ladder reach? How far from the wall is the base of the ladder?

£ T laslder reaches 2JZ wmeters up +ro vall,
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A square has a diagonal of length 8 cm. Find the length of each side.




8.5 Applications of Trigonometry

Angle of elevation- is the angle made with the ground and

" . . horizon
your line of sight to an object above you. - SR ;
&,/ D D D b i
Angle of depression- is the angle from the horizon and your S, 000 . '
line of sight to an object below you. Q{S‘ . ials :«%@\\ :
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Compass Bearing- is the direction towards which you are S'e5 O I_I O ‘\\:

headed, as shown by a compass. It is most commonly written ground

in the form N 6° E, meaning the bearing that makes an angle of

6° with North towards East. (North or South is usually given before East or West, and the angle never exceeds
90°.)

Write the correct compass bearing for the
following points.

A N 20" E
B. N 6O W - 300

c. S0 E .

D 80° |4
p. S 30° W

Draw a diagram for each of the following problems. Then write an equation to represent the situation and
then solve the problem. Round your answers to the nearest tenth.

Example 1:

From a boat on the lake, the angle of elevation to the top of a cliff is 13°. If the base of the cliff is 1366 feet
from the boat, how high is the cliff?
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Example 2: -
‘rom a balloon 910 feet high, the angle of depression to the ranger headquarters is 64°. How far is the
headquarters from a point on the ground directly below the balloon?
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A person is watching a boat from the top of lighthouse. The boat is approachlng the lighthouse directly. When
first noticed, the angle of depression is 18°. When the boat stops, the angle of depression is 50°. The
lighthouse is 200 feet tall. How far did the boat travel from when it was first noticed until it stopped?
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Example 4: X e U= (6. 'n:ltum 12 €+

A person is 25 feet from the base of a barn. The angle of elevation from the level ground to the top o
is 70°. How tall is the barn?
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Example 5:

A sledding run is 500 yards long with a vertical drop of 65.7 yards. Find the angle of depression of the run.

Example 6: A sailboat leaves the dock at a bearing of N 37° E and travels a distance of 100 km. Immediately
after, the boat turns and travels due south. How far does the boat need to travel in order to be due east of the
dock?
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Example 7: Two planes leave from the airport at the same time. Plane A travels at a bearing of S 45° W and

travels at a speed of 527 mph. Plane B travels at a bearing of N 45° W and travels at a speed of 650 mph.
<X
After 2 hours how far apart are the planes?
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