
\qquad
\qquad

Find the length of each highlighted arc. Write your answers in terms of $\boldsymbol{\pi}$ and as decimals rounded to the nearest hundredth.
1)

2)

Exact answer \qquad
Decimal answer \qquad

SM2 12.3 - Arc Length and Sector Area

Exact answer \qquad
Decimal answer \qquad
3)

Exact answer \qquad
Decimal answer \qquad
5)

6)

Exact answer \qquad
Decimal answer \qquad
4)

Exact answer \qquad
Decimal answer \qquad

Exact answer \qquad
Decimal answer \qquad

Find the area of each highlighted sector. Write your answers in terms of $\boldsymbol{\pi}$ and as decimals rounded to the nearest hundredth (2 decimal places).
7)

Exact answer \qquad
Decimal answer \qquad
9)

Exact answer \qquad
Decimal answer \qquad
11)

Exact answer \qquad
Decimal answer \qquad
8)

Exact answer \qquad
Decimal answer \qquad
10)

Exact answer \qquad
Decimal answer \qquad
12)

Exact answer \qquad
Decimal answer \qquad

Review from 12.1 and 12.2

13) Use the given diagram to answer each question, $m \angle D E C=61^{\circ}$ (refer to 12.1 if you have questions).

Name one inscribed angle:
(Make sure to use 3 letters when naming your angle!!)
Name one central angle: \qquad
(Make sure to use 3 letters when naming your angle!!)
$m \angle B E C=$ \qquad
$m D C=$ \qquad
$m \angle D A C=$ \qquad

Find the value of \mathbf{x} in each figure (refer to $\mathbf{1 2 . 2}$ if you have questions)
14)

15)
$\overline{\mathrm{AB}}$ is a diameter

16) Find value of x. Assume that segments which appear to be tangent to the circle are tangent to the circle. If necessary, round your answers to the nearest tenth.

